1,369 research outputs found

    HIGH-SPEED ROTOR TIP CLEARANCE MEASUREMENTS IN A TRANSONIC COMPRESSOR

    Get PDF
    Performance of a gas turbine compressor is directly dependent on the size of the region between the rotor blade’s tips and the surrounding casing, the tip clearance, which dynamically changes with rising rotor speed due to rotor blade radial growth from centrifugal loading. Too large a tip clearance introduces disruptive air flow that will lower compressor efficiency and lead to stall conditions, whereas too small a tip clearance will increase the risk of blade tip rubbing with the casing inner wall and may lead to catastrophic failure. This experiment is a part of a program of research that characterizes the Naval Postgraduate School Military Fan (NPSMF) in the Turbopropulsion Lab’s (TPL) Transonic Compressor Rig (TCR). This study involves the design, creation, and use of two benchtop rigs with a capacitive proximity probe blade tip clearance measurement system to develop mathematical methods to post-process capacitive probe output signals for calibration and tip clearance measurements. The mathematical methods developed in this study are validated against the tip clearance measurement system manufacturer’s method, showing improvement. A comparison of the different calibration rigs’ resulting calibration curves is discussed. The post-process method is then applied to high-speed tip clearance measurements of the NPSMF in the TCR and the results are compared to a model.Office of Naval Research, Arlington, VAOutstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Full text link
    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.Comment: 6 pages, 4 figures, final published versio

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    Credit markets in the fisheries sector under the CARP: A review of literature and conceptual framework

    Get PDF

    Model-based design for self-sustainable sensor nodes

    Get PDF
    Long-term and maintenance-free operation is a critical feature for large-scale deployed battery-operated sensor nodes. Energy harvesting (EH) is the most promising technology to overcome the energy bottleneck of today’s sensors and to enable the vision of perpetual operation. However, relying on fluctuating environmental energy requires an application-specific analysis of the energy statistics combined with an in-depth characterization of circuits and algorithms, making design and verification complex. This article presents a model-based design (MBD) approach for EH-enabled devices accounting for the dynamic behavior of components in the power generation, conversion, storage, and discharge paths. The extension of existing compact models combined with data-driven statistical modeling of harvesting circuits allows accurate offline analysis, verification, and validation. The presented approach facilitates application-specific optimization during the development phase and reliable long-term evaluation combined with environmental datasets. Experimental results demonstrate the accuracy and flexibility of this approach: the model verification of a solar-powered wireless sensor node shows a determination coefficient () of 0.992, resulting in an energy error of only -1.57 % between measurement and simulation. Compared to state-of-practice methods, the MBD approach attains a reduction of the estimated state-of-charge error of up to 10.2 % in a real-world scenario. MBD offers non-trivial insights on critical design choices: the analysis of the storage element selection reveals a 2–3 times too high self-discharge per capacity ratio for supercapacitors and a peak current constrain for lithium-ion polymer batteries

    Causes and characteristics of uveitis in dogs

    Get PDF
    A uveíte é uma das afecções oculares mais frequente nos cães, muitas vezes associada a doença sistémica. O trabalho que se apresenta é um estudo retrospetivo de casos de uveítes caninas e foi realizado com o objetivo de fazer uma análise descritiva das uveítes nesta população e avaliar as suas causas, em especial a relação com doenças sistémicas

    An infinite step billiard

    Get PDF
    A class of non-compact billiards is introduced, namely the infinite step billiards, i.e. systems of a point particle moving freely in the domain Ω = ∪n∈ℕ[n,n + 1] × [0, p_n], with elastic reflections on the boundary; here p_0 = 1, p_n > 0 and pn ↘ 0. After describing some generic ergodic features of these dynamical systems, we turn to a more detailed study of the example p_n = 2^{-n}. Playing an important role in this case are the so-called escape orbits, that is, orbits going to +∞ monotonically in the X-velocity. A fairly complete description of them is given. This enables us to prove some results concerning the topology of the dynamics on the billiard

    Fly, Wake-up, Find: UAV-based Energy-efficient Localization for Distributed Sensor Nodes

    Get PDF
    A challenging application scenario in the field of industrial Unmanned Aerial Vehicles (UAVs) is the capability of a robot to find and query smart sensor nodes deployed at arbitrary locations in the mission area. This work explores the combination of different communication technologies, namely, Ultra-Wideband (UWB) and Wake-Up Radio (WUR), with a UAV that acts as a "ubiquitous local-host"of a Wireless Sensor Network (WSN). First, the UAV performs the localization of the sensor node via multiple UWB range measurements, and then it flies in its proximity to perform energy-efficient data acquisition. We propose an energy-efficient and accurate localization algorithm - based on multi-lateration - that is computationally inexpensive and robust to in-field noise. Aiming at minimizing the sensor node energy consumption, we also present a communication protocol that leverages WUR technology to minimize ON-time of the power-hungry UWB transceiver on the sensors. In-field experimental evaluation demonstrates that our approach achieves a sub-meter localization precision of the sensor nodes - i.e., down to 0.6 m - using only three range measurements, and runs in 4 ms on a low power microcontroller (ARM Cortex-M4F). Due to the presence of the WUR and the proposed lightweight algorithm, the entire localization-acquisition cycle requires only 31 mJ on the sensor node. The approach is suitable for several emerging Industrial Internet of Things application scenarios where a mobile vehicle needs to estimate the location of static objects without any precise knowledge of their position
    • …
    corecore